Ремонт и техническое обслуживание автомобилей
Диагностика датчика концентрации кислорода или λ-зонда
Общие сведения о датчике концентрации кислорода
В современных автомобильных двигателях, снабженных системой впрыска топлива и каталитическим нейтрализатором, необходимо точно контролировать состав топливовоздушной смеси (ТВ-смеси) и поддерживать коэффициент избытка воздуха на постоянном уровне (α = 1), чем обеспечиваются экономия топлива и уменьшение содержания токсичных веществ в выхлопе.
Для обеспечения постоянного контроля над составом ТВ-смеси применяются датчики концентрации кислорода (ДКК или λ-зонды), устанавливаемые в системе отвода выхлопных газов и информирующие электронный блок управления двигателем (ЭБУ двигателя или ЭБУ-Д) о концентрации кислорода в отработавших газах.
Информация поступает в ЭБУ двигателя в виде электрических сигналов, и блок управления посредством изменения времени открытия форсунок корректирует состав смеси.
При изменении концентрации кислорода в отработанных газах λ-зонд формирует выходное напряжение, которое изменяется приблизительно от 0,1 В (пои высоком содержание кислорода — смесь бедная) до 0,9 В (при низком содержании кислорода — богатая смесь).
Для нормальной работы λ-зонд должен иметь температуру не ниже 300 °С. Поэтому для быстрого прогрева датчика после пуска двигателя, в него встроен нагревательный элемент.
Сигнал от датчика кислорода используется в ЭБУ двигателя для коррекции длительности открытого состояния форсунок и поддержания тем самым стехиометрического состава топливовоздушной смеси.
Если смесь бедная (низкая разность потенциалов на выходе датчика), то в ЭБУ вырабатывается команда на обогащение смеси (увеличение времени открытия форсунки).
Если смесь богатая (высокая разность потенциалов) — дается команда на обеднение смеси (форсунка открывается на короткое время).
В основном используются циркониевые и титановые датчики концентрации кислорода, работа которых основывается на том факте, что их выходное напряжение остается постоянным (равным 0,45 В при α = 1), но может изменяться скачкообразно от 0,1 В до 0,9 В при изменении коэффициента избытка воздуха в диапазоне α = 0,99…1,11 при переходе через значение α = 1.
Имеется несколько разновидностей датчиков концентрации кислорода.
- датчик с одним потенциальным выводом и заземляемым корпусом. От потенциального вывода сигнал поступает в ЭБУ двигателя. В качестве второго сигнального провода используется «масса» автомобиля;
- датчик с двумя потенциальными выводами. Здесь измерительная цепь датчика не связана с «массой», а используется второй провод;
- датчик с тремя выводами, на одном из которых — измерительный сигнал, два провода — для питания электронагревателя датчика. В качестве измерительной «земли» используется «масса» автомобиля;
- датчик с четырьмя выводами. В этом случае нагреватель и датчик изолированы от «массы».
Неисправности, приводящие к неверным показаниям датчика кислорода
Датчик кислорода реагирует на парциальное давление кислорода в выхлопных газах, а не на наличие в них топлива. Поэтому в некоторых случаях датчик кислорода ложно индицирует либо бедную, либо богатую ТВ-смесь.
1. При пропуске зажигания (например, неисправна или закоксована свеча) не вступивший в реакцию горения кислород поступает из цилиндра в выпускной тракт, где датчик кислорода ложно регистрирует обеднение топливовоздушной смеси (поскольку в выхлопе много кислорода).
2. При негерметичности выпускного коллектора датчик кислорода будет реагировать на кислород воздуха, поступающего извне, сигнализируя ЭБУ двигателя о чрезмерно бедной смеси в цилиндрах.
В любых случаях электронный блок управления двигателем реагирует на ложное обеднение ТВ-смеси, как на истинное, и автоматически увеличивает подачу топлива в цилиндры. Это приводит к забрызгиванию свечей зажигания топливом, к пропускам воспламенения и к значительному перерасходу топлива.
Датчик кислорода выдает ложный сигнал об обогащении ТВ-смеси, если имеет место «отравление» датчика. Отравление наступает при появлении некоторых веществ в выпускном коллекторе, что вызывает изменение статических характеристик датчика кислорода и постепенный выход его из строя. Чаще всего отравителями являются свинец (Рb) из этилированного бензина или кремний (Si) из силиконовых герметиков.
Ложное обогащение может иметь место и при неисправности перепускного клапана в системе рециркуляции выхлопных газов, от электрических наводок со стороны близкорасположенного высоковольтного провода системы зажигания, а также при плохом заземлении датчика кислорода.
Рис. 1. Влияние различных факторов на характеристики датчика кислорода
Внешний осмотр датчика кислорода
Неисправный датчик кислорода ремонту не подлежит и требует замены, но перед заменой целесообразно внимательно осмотреть снятый датчик. Это поможет выяснить причину, из-за которой датчик вышел из строя. В противном случае новый датчик прослужит недолго.
- Черная сажа на датчике обычно образуется при работе на богатой ТВ-смеси.
- Отложение на датчике белого (как мел) порошка бывает при «отравлении» датчика кремнием, например, если при ремонте двигателя был неправильно применен силиконовый герметик.
- Наличие белого песка на датчике означает его отравление антифризом из системы охлаждения. Датчик в этом случае может быть и зеленого цвета, при этом, скорее всего, дефектны головка цилиндров или прокладка головки.
- Темно-коричневые отложения на датчике свидетельствуют, что в выхлопных газах слишком много масла (не исправна система вентиляции картера, изношены уплотнительные кольца поршней и т. д.).
Диагностика датчика кислорода с помощью сканера
Процедура диагностирования следующая.
1. Подключить сканер к диагностическому разъему автомобиля.
2. В режиме холостого хода хорошо прогреть двигатель и датчик концентрации кислорода, затем поднять обороты до 2500 об/мин.
3. Убедиться, что система управления двигателем работает в замкнутом режиме.
4. Установить на сканере режим записи параметров датчика кислорода и произвести запись.
5. Просмотреть запись и определить параметры выходного сигнала датчика кислорода.
6. При исправности системы подачи топлива и датчика кислорода, амплитуда сигнала должна равномерно колебаться с частотой 3…10 Гц (чем выше частота сигнала, тем надежнее работает система) при достоянной частоте вращений коленчатого вала двигателя. Нижний уровень сигнала должен находиться в диапазоне 0,1 — 0,3 В, верхний — между уровнями 0,6…0,9 В. Фронты сигнала должны быть крутыми.
Диагностика датчика кислорода с помощью мультиметра
Для диагностирования датчика кислорода используется цифровой мультиметр (лучше автомобильный) в режиме измерения постоянного напряжения с высоким входным сопротивлением. Подключение мультиметра к датчику кислорода показано на рис. 2.
Двигатель прогревают, система управления должна работать в замкнутом режиме, мультиметр покажет среднее значение напряжения на выходе датчика:
- если датчик не реагирует на изменяющуюся концентрацию кислорода в выхлопных газах, на его выходе будет постоянное напряжение примерно 450 мВ. Однако вывод о неисправности датчика делать преждевременно, так как исправный датчик; с симметричным выходным сигналом даст выходной сигнал со средним значением напряжения 450 — 500 мВ;
- показания более 550 мВ означают, что большую часть времени напряжение на выходе датчика высокое, т. е. топливная система подает в двигатель богатую смесь, или датчик закоксован;
- показания менее 350 мВ означают, что большую часть времени напряжение на выходе датчика низкое, т. е. топливная система подает в двигатель бедную смесь. Возможна утечка разрежения во впускном коллекторе или ограничена подача топлива через засорившиеся фильтр или форсунку.
Если используемый мультиметр поддерживает режим определения максимального и минимального значений сигнала, результат будет более информативен (таблица 1).
Таблица 1. Анализ показаний мультиметра при проверке датчика кислорода
Лямбда-зонд — что это, признаки неисправности и способы проверки
Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.
Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.
Характеристики кислородного датчика
Все знают, что инжекторный двигатель является более экономичным и безопасным (с экологической точки зрения), чем карбюраторный мотор. Это становится возможным благодаря полному контролю за подачей топливной смеси и воздуха. Этот контроль осуществляется несколькими датчиками, которые обеспечивают проверку основных рабочих параметров и направляют эти данные электронному блоку. После их анализа производится корректировка работы системы в целом.
Кислородный датчик
Контроллеры, для получения полной информации центральным блоком, установлены не только на впускной системе (определение количества топлива/воздуха), но и на выпуске.
Здесь работает лишь один регулятор, но именно его работа определяет, какой объем воздуха станет поступать в цилиндры.
Его название – лямбда зонд (кислородный датчик). И это один из важнейших участников системы.
Предназначение и основные функции
Датчик кислорода — это датчик сопротивления, который располагается около катализатора, на коллекторе впуска. Параметры, передаваемые этим датчиком, также передаются на управляющий блок, где проходят обработку, а затем используются в поддержании соответствующего состава топливно-воздушной смеси (ТВС). Лямбда зондом отправляются сигналы на электронный блок в случае, если в камеру двигателя поступает переобогощенная или обедненная рабочая смесь. На основании этих данных управляющий блок корректирует поступление воздуха и горючего для образования «правильной» смеси.
Принцип работы и устройство регулятора кислорода
Давайте разберем, как устроен лямбда зонд. В конструкции каждого универсального лямбда зонда имеются следующие элементы:
- Металлический корпус универсального контроллера со специальным отверстием для обеспечения вентиляции датчика. Кроме отверстия на корпусе имеется резьба, при помощи которой датчик ставится в соответствующее место.
- Резиновый уплотнитель, отвечающий за герметичность конструкции.
- Изолятор, который всегда изготавливается из керамики.
- Наконечник (также выполненный из керамических материалов).
- Несколько контактов, подключающих контроллер к основной сети.
- Щиток защиты, имеющий выпускное отверстие для отхода отработанного газа.
- Нагревающий элемент датчика.
- Вмонтированная в индивидуальный резервуар спираль.
Устройство кислородного датчика
Любое устройство (1-й и 2-й кислородный регулятор), выполняется из материалов, имеющих высокие свойства термостойкости. Это имеет огромное значение, ведь датчик постоянно работает при повышенных температурах. Элемент можно отнести к одному из типов — их отличие состоит в числе контактов (от одно- до четырехпроводных).
Как уже было отмечено ранее, диагностический регулятор содержания кислорода применяется для поддержания корректного расчёта требуемого объема топлива для установления количества воздуха, поступающего в цилиндры. Датчиком кислорода рассчитываются данные показатели соответственно с показателями экономии и экологии. Это тоже имеет значение, ведь в последнее время к средствам транспорта предъявлены очень строгие требования в вопросах безопасности экологии.
Данный элемент снижает вред для окружающей среды, опираясь на объем содержания вредных веществ в выхлопе.
Виды кислородных датчиков
Кроме лямбда-зондов из циркония, которые наиболее популярны, применяются также изделия других типов.
Датчик из титана
Этот тип кислородных устройств обладает чувствительным элементом, выполненным из прочнейшего материала — диоксид титана. Рабочий температурный режим данного устройства измеряется от 700°C. Этим устройствам не требуется атмосферный воздух, поскольку в основе принципа их действия лежит преобразование напряжения на выходе, в соответствии с концентрацией кислорода в выхлопных газах.
Виды кислородных датчиков
Широкополосный кислородный элемент
Это усовершенствованная модификация. В ее состав входит циркониевый датчик, схема которого дополнена закачивающим элементом. Контроллер из циркония обеспечивает измерение концентрации кислорода в отработанных газах, осуществляя фиксацию напряжения, которое вызвано разностью потенциалов. Затем выполняется сравнение показаний с эталонным значением (450мВ), и, при обнаружении отклонений, начинает подаваться ток, способствующий закачиванию ионов кислорода из выхлопных газов. Это производится до того момента, пока значение напряжение не сравняется с эталоном.
Типы устройств
Циркониевые датчики кислорода (титановые мы упускаем) бывают двух типов — пороговые и широкополосные.
Последние типы устройств обычными методами проверить непросто, так как они сложные в устройстве, устанавливаются на последние модели автомобилей. Схема подключения показана ниже.
Более подробно что такое лямбда зонд, эволюция его развития, какие типы бывают читайте здесь , в данном материале останавливаться на этом мы не будем.
Рабочий ресурс кислородного устройства
Кислородный элемент является одним из датчиков, который имеет достаточно быстрый износ. Это обусловлено тем, что он подвергается постоянному контакту с отработанными газами и его рабочий ресурс прямо зависит от качества топливной смеси и отсутствия неисправностей в двигателе. К примеру, датчик из циркония рассчитан на 70-130 тыс. км пробега.
Работа нижнего и верхнего датчика находится под постоянным контролем бортовой диагностической системы. И при сбое одного из них фиксируется соответственная ошибка, при этом на приборной панели загорается лампочка («Check Engine»). Определить поломку в этом случае можно при помощи специального сканера диагностики.
При исправном функционировании лямбда зонда, параметры сигнала представлены правильной синусоидой, которая демонстрирует частоту переключения не меньше 8 раз за 10с.
Схема работы кислородного датчика
Как работает датчик
Выхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы. Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ.
Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 oC. Только при такой температуре твёрдый электролит способен проводить электричество.
Причины неисправностей и как их определить
При неправильной работе лямбда зонда силовой агрегат автомобиля начинает работать нестабильно.
Причины поломки кислородного датчика
Рассмотрим причины, по которым регулятор может дать сбой.
- В электрической цепи случился разрыв, например, в точке подключения датчика к общей сети. Другой причиной может состоять в недостаточном контакте на контроллере либо его окислении.
- Замыкание при работе регулятора.
- Загрязнение, которое является самой распространенной причиной неисправности датчика. Данная поломка, зачастую, случается из-за постоянной заправки автомобиля некачественным топливом.
- Температурная перегрузка датчика. Данная проблемы возникает из-за сбоев в системе зажигания.
- Непрерывное передвижение автомобиля по бездорожью приводит к большим вибрациям и к повреждению устройства.
- Кислородный элемент часто ломается при попадании в систему цилиндров силового агрегата или во впускную систему антифриза.
- Поломка нагревателя регулятора. Очень часто данная проблема возникает из-за износа контроллера (его естественного «старения»).
- Датчик может выйти из строя, если двигатель работает на слишком обогащенной ТВС.
Симптомы поломки лямбда зонда
Определить неисправность кислородного датчика можно по следующим симптомам:
- расход топлива значительно вырос;
- обороты «плавают» при холостых оборотах силового агрегата;
- вы стали ощущать характерные рывки, когда автомобиль набирает скорость;
- катализатор работает нестабильно;
- повысилась концентрация токсинов в отработанном газе.
В том случае, если вы обнаружите хотя бы один из перечисленных признаков, следует провести диагностику контроллера, а в случае необходимости — заменить его.
Датчик кислорода
Идентификация датчика кислорода
Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.
Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.
Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.
Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?
Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».
Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.
Диагностика лямбда зонда
Выше мы рассказали, как работает лямбда зонд, а теперь поговорим о диагностике и прочистке датчика.
Итак, начиная диагностику, нужно погреть элемент. Для этого следует запустить силовой агрегат и дать ему работать примерно 10мин. Это должно обеспечить идеальную проводимость в электролите и создание конечного напряжения на регуляторе кислорода. Диагностика производится без отключения лямбда зонда, при работающем и прогретом моторе. Сама диагностика выполняется при помощи осциллографа — данное оборудование дает самый правильный результат.
Если нормативное значение напряжения будет отличаться от полученного при диагностике, то датчик нужно заменить. Параметр напряжения должен составлять не меньше 10,5В. Обнаружив пониженное значение напряжения следует проверить качество подключения регулятора кислорода и соответствующих разъемов, помимо этого, необходимо убедиться в заряженности аккумулятора.
Ещё нужно протестировать сопротивление датчика. Для чего требуется отключить разъем. В идеальном варианте показатель сопротивления должен находиться в интервале 2-14Ом, но это значение зависит от модели датчика кислорода.
Как осуществляется проверка?
Подключите осциллограф к сигнальному проводу, как его найти вы уже знаете.
Заведите автомобиль и прогрейте его до 60 – 70С. За это время прогреется О2-датчик и включился режим обратной связи.
Уже по мере прогрева на приборе будет видно, как лямбда зонд генерирует небольшой ток в пределах 1 вольта.
По мере прогрева лямбды уровень напряжение будет расти (тоже в пределах до 1В), и по мере выхода на рабочую температуру до 300 – 400 С она начинает свои осцилляции.
На прогретом двигателе выйдите на режим 2500 – 3000 оборотов в минуту, если лямбда исправна на приборе появится такая диаграмма.
При резком опускании газа смесь должна какое-то время обогащаться, на диаграмме это выглядит так.
На холостых оборотах смесь сначала переходит в режим бедной.
А затем переходи в режим неуверенных осцилляций.
- Время прогрева — через сколько лямбда выходит на рабочий режим;
- На оборотах двигателя 2000 – 3000, проверяется вот такая картина.
Если на графике видно, что лямбда зависла в нижнем или верхнем положении, т.е. дает постоянно низкий или высокий уровень сигнала, то это значит, что датчик кислорода нужно менять. Но при условии, что двигатель прогрет, а внешний осмотр дал положительный результат.
Если вы наблюдаете такую картину, как показано ниже, то, скорее всего, лямбда зонд вышел из строя в результате перегрева.
Прочистка кислородного датчика
Если датчик не исправен, то, обычно, его требуется заменить, но в иногда проблему можно решить, почистив кислородный регулятор.
Для прочистки датчика следуйте инструкции:
- Отключить контроллер от питания.
- Демонтировать датчик. Удобнее это сделать при помощи специального инструмента, но если такового нет, то выполните демонтаж руками.
- Процедура прочистки осуществляется ортофосфорной кислотой. Кислородный регулятор помещается в ёмкость с кислотой ориентировочно на 10-20мин. Этого времени достаточно, чтобы кислота удалила имеющиеся отложения и окислы, не разрушив целостность электродов. Для наибольшего эффекта прочистки можно снять защитный колпак, но сделать это не всегда возможно, поскольку для демонтажа необходим токарный станок.
- По завершению процедуры прочистки контроллера необходимо промыть его в воде и хорошо просушить.
Если выполненные действия не привели к работоспособности устройства, то его требуется поменять. Заменяя регулятор кислорода, следует убедиться в том, что разъёмы на меняемых датчиках идентичны.
Важно! Процедура прочистки может быть выполнена лишь тогда, когда под защитным колпаком датчика присутствуют отложения.
Чистка кислородного датчика
Замена кислородного датчика
Заменяя лямбда зонд необходимо соблюдать некоторые правила:
- выкручивать регулятор нужно на остывшем до 40-50°C моторе (в этот момент тепловая деформация не так велика, а детали не слишком раскалены);
- выполняя монтаж нужно смазать поверхность резьбы герметиком, который исключит прикипание;
- удостовериться в целостности уплотнительной прокладки;
- затягивать элементы следует производить с определенным производительным моментом – так будет обеспечена нужная герметичность;
- подключая разъём следует проверить электропроводку на повреждения;
- после окончания процесса установки следует провести тестирование при разных режимах работы силового агрегата.
Доказательством правильной работы лямбда зонда будет отсутствие указанных ранее признаков сбоев, а также ошибок на электронном блоке управления.
Помогите. ЛЯМБДА ЗОНДы
Товарищи. ПОмогите. Какие показания должны выдавать лямбды зонды ?
я думаю так ПЕРВЫЙ (до катализатора)-показания колеблются от 100 до 700 (вродебы МИЛЛИВОЛЬТЫ) и при нажатии на газ показания стремятся к 0.
ВТорой (после катализатора)- показания примерно на одном месте (600)( максимальный разброс 100) и при нажатии на газ показания стремятся к нулую .
правильно я думаю?
Богатая 0,9 В
Обогащенная 0,8 В
Оптимальная 0,45 В = 14,7
Обедненная 0,2 В
Бедная 0,1 В
0,3 В = 14,9
0,6 В = 14,4
зы. опорное напряжение лямбда-зонда — 0,45В, т.е. все колебания относительно этой величины. И если лямбда стабильно показывает 0,45 без колебаний, то это не «оптимальная смесь», это «доктор, мы теряем его».
[Сообщение изменено пользователем 12.11.2010 14:10]
Сверяйся. 1 лямбда может гулять туда сюда чаще. Главное чтобы не зависал в определённом положении. У некоторых рисует зигзаги (вверх вниз за секунду) из-за моментальной коррекции смеси.
Во втором лз наоборот главное чтобы график намного отличался от первого. Чем реже он делает перепады — тем живее каталитик. Если он полностью повторяет 1-ую . тогда звизда кату.
Диагностика по широкополосным лямбда-зондам
В предыдущих статьях мы с вами рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Так же были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков. Но все автомобилестроители в мире постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Что бы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.
До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, загрязнением атмосферы от них можно было пренебречь. Все сильно изменилось во время автомобильного бума в начале 60-х. Первым от «чуда современной цивилизации» под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «Роза Ветров». Он очень плохо продувается и людям от выхлопных газов просто стало нечем дышать. И был принят ряд законодательных актов, заставляющих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей. На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй мои условия. Таким образом, требования законодательства Калифорнии незаметно распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «Роза Ветров» более благоприятная, и экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» – более жесткие, и «европейские» – чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока только в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира. До недавнего времени экологии на этих рынках уделялось крайне незначительное внимание. Но вступление России в ВТО потребовало ужесточения экологических норм для выпускаемых в ней автомобилей. Как же выполнить все более ужесточающиеся международные экологические требования?
Напомню, что такое вредные выбросы. Это не сгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и нас – специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.
Широкое начало применения лямбда-зондов в автомобилестроении получило еще в конце70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм ЕВРО-4 и ЕВРО-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «Да – Нет». Системе лямбда регулирования постоянно приходиться чуть добавлять и убавлять топливо для того чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах. Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент занимают лидирующее положение в автомобилестроении.
Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой BOSCH в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.
Условно систему лямбда-регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1).Зона А – ионный насос, зона В – «скачковый» лямбда-зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.
Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе) и в ней (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель3. Непрогретый лямбда-зонд не работоспособен.
Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да – нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):
- Откачать лишний кислород из щели в выхлопные газы. Если избыточный кислород там присутствует. Бедная смесь. Ток положительный.
- Закачать недостающий кислород в щель. Если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.
- Ничего не делать, если смесь стехиометрическая. Ток нулевой.
Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.
С началом применения широкополосных лямбда-зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).
Если ток не нулевой. Это означает, что системе вывести стехиометрию не удалось. Причин тут две:
- Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга. Т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводиться нечасто. Например, два автомобиля Опель Вектра, оборудованные системой впрыска BOSCH и принимавшие участие в съемках фильма ОРТ «Левый Автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.
- Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».
Действия диагноста в этих случаях заключаются:
А. Проверка самого лямбда-зонда.
В. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в Интернете и учебных пособиях. Не будем повторяться.
Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.
Первый «подводный камень» заключается в том, что не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен с точностью до наоборот! Положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.
ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.
Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к Рис.1 .
Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. На большинстве сервисов все предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.
Pin 1. Ток ионного насоса. Проводиться миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.
Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производителем. Необходимо свериться с мануалами.
Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.
Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.
Второй «подводный камень» заключается в том, что ЭБУ не может понимать ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводиться не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.
Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находиться система топливоподачи автомобиля.
Третий «подводный камень» заключается в том, большинство широкополосных датчиков не взаимозаменяемы друг с другом. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?
Ответ дают сами производители автомобилей.
Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не состоянии гарантировать правильную работу системы.